poorly defined, but consistent with the known trans configuration of the pyridine N atoms in the structure of dpyam (Johnson \& Jacobson, 1973). The sulfate anion is also disordered about a centre of symmetry, with a $\mathrm{SOF}=0 \cdot 5$. The O atoms can be separated into two poorly defined interpenetrating tetrahedra. The uncoordinated water molecule is also disordered, $\mathrm{SOF}=0.5$.

The square-based pyramidal distorted trigonal bipyramidal $\mathrm{CuN}_{4} \mathrm{~N}^{\prime}$ chromophore (I) has been observed previously in the cations of $\left[\mathrm{Cu}(\text { bpy })_{2}\left(\mathrm{NH}_{3}\right)\right]\left[\mathrm{BF}_{4}\right]_{2}$ (Stephens, 1972) $(\tau=0.77)$ and $\left[\mathrm{Cu}(\mathrm{bpy})_{2}\left(\mathrm{NCS}_{2}\right)\left[\mathrm{BF}_{4}\right]\right.$ (Tyagi \& Hathaway, 1981) $(\tau=0 \cdot 60)$ and in a series of cation distortion isomers of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2} \mathrm{Cl}\right]^{+}$cation (Harrison et al., 1981) ($\tau=1 \cdot 0-0 \cdot 60$). These have been used to suggest a structural pathway from a regular trigonal bipyramidal ($\tau=1.0$) to a distorted square-based pyramidal ($\tau=0.0$) stereochemistry (Hathaway, 1984) and suggest that (I) forms a point in a more extensive $(\tau=0.31)$ structural pathway for the $\mathrm{CuN}_{4} \mathrm{~N}^{\prime}$ chromophore.

The ESR spectrum of (I) is isotropic, $g_{i}=2.083$, and gives no information on the electronic ground state of the copper(II) ion, due to the misalignment of the local molecular axes (Hathaway, 1984) of the two differently orientated $\mathrm{CuN}_{4} \mathrm{~N}^{\prime}$ chromophores ($2 \gamma=90^{\circ}$) in (I). The electronic reflectance spectrum of (I) has two almost equally intense peaks at 10630 and $14230 \mathrm{~cm}^{-1}, \Delta E=3600 \mathrm{~cm}^{-1}$, consistent with its stereochemistry, and similar to the electronic spectra of the comparable structure in the series of cation distortion isomers of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2} \mathrm{Cl}\right]^{2+}$ cation (Harrison et al., 1981).

The authors acknowledge the award of a senior studentship (to PA), help in data collection by Dr M . McPartlin and Mr A. Bashall (Department of

Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway Road, London), the Computer Bureau (UCC) for computing facilities, Professor G. M. Sheldrick, Drs P. Roberts, S. Motherwell, K. Henrick and K. Davies, for the use of their programs, and the Microanalysis Section (UCC) for analysis.

References

Addison, A. W., Nageswara Rao, T., Reedil, J., van Run, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71, 148. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Davies, E. K. (1980). CHEM-X. Molecular graphics program developed and distributed by Chemical Design Ltd, Oxford.
Fuller, C. C. \& Jacobson, R. A. (1981). Inorg. Chim. Acta, 48, 191-197.
Harrison, W. D., Kennedy, D. M., Power, M., Sheahan, R. \& Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1556-1564.
Hathaway, B. J. (1984). Struct. Bonding (Berlin), 57, 55-118.
Hathaway, B. J. (1987). Comprehensive Coordination Chemistry. The Synthesis, Reactions, Properties \& Applications of Coordination Compounds. Editor in Chief G. Wilkinson, FRS; Executive Editors R. D. Gillard \& J. A. McClerverty, Vol. 5, section 53, pp. 533-774. Oxford: Pergamon Press.
Henrick, K. (1980). PUBTAB. Program to prepare and print crystallographic tables for publication.
Johnson, J. E. \& Jacobson, R. A. (1973). Acta Cryst. B29, 1669-1674.
Ray, N. \& Hathaway, B. J. (1978). Acta Cryst. B34, 3224-3229. Roberts, P. \& Sheldrick, G. M. (1979). XANADU. Program for the calculation of crystallographic data. Univ of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stephens, F. S. (1972). J. Chem. Soc. Dalton Trans. pp. 13501353.

Tyagi, S. \& Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 2029-2033.

Structural Characterization of Two Hafnium(IV) Complexes, $\mathbf{H f C l}_{\mathbf{4}}\left(\mathbf{P h}_{\mathbf{2}} \mathbf{P C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathrm{PPh}_{2}\right) .2 \mathrm{C}_{7} \mathbf{H}_{\mathbf{8}}$ and $\mathbf{H f C l}_{\mathbf{4}}\left(\mathbf{P h}_{\mathbf{2}} \mathbf{P C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{P P h}_{\mathbf{2}}\right)$

By F. Albert Cotton,* Piotr A. Kibala and William A. Wojtczak
Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A\&M University, College Station, TX 77843, USA

(Received 30 May 1990; accepted 2 July 1990)

Abstract

Bis(diphenylphosphino)ethane$\left.\left.P, P^{\prime}\right)\right]$ tetrachlorohafnium(IV) bistoluene solvate,

[^0]$\left[\mathrm{HfCl}_{4}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)\right] \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}, \quad M_{r}=903 \cdot 01$, monoclinic, $C 2 / c, a=11.340$ (3), $b=18.243$ (6), $c=19.661$ (3) \AA, $\beta=103 \cdot 96(2)^{\circ}, \quad V=3947(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.519 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71073 \AA, \quad \mu=$
© 1991 International Union of Crystallography
$\left[\mathrm{HfCl}_{4}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)\right] \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ AND $\left[\mathrm{HfCl}_{4}\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{P}_{2}\right)\right]$
$30.0 \mathrm{~cm}^{-1}, F(000)=1800, T=294 \mathrm{~K}, R=0.035$ for 2079 observed reflections. (2) [1,3-Bis(diphenylphosphino) propane- P, P^{\prime})]tetrachlorohafnium(IV), [Hf$\left.\mathrm{Cl}_{4}\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{P}_{2}\right)\right], \quad M_{r}=732 \cdot 76$, monoclinic, $P 2_{1} / n$, $a=12.596$ (5),$\quad b=14.117$ (2), $\quad c=17 \cdot 028$ (4) \AA, $\beta=109.91(2)^{\circ}, \quad V=2847(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.710 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $41.4 \mathrm{~cm}^{-1}, F(000)=1432, T=294 \mathrm{~K}, R=0.049$ for 1509 observed reflections. In both compounds the coordination around Hf is distorted octahedral with P atoms cis to each other forming five- or sixmembered chelate rings. The mean $\mathrm{Hf}-\mathrm{Cl}$ and $\mathrm{Hf}-\mathrm{P}$ distances are 2.374 (1) and $2 \cdot 808$ (2) \AA, and 2.372 (15) and 2.823 (2) \AA for (1) and (2), respectively. In both compounds the $\mathrm{Hf}-\mathrm{Cl}$ distances for the Cl atoms trans to the P atoms are somewhat shorter than the other $\mathrm{Hf}-\mathrm{Cl}$ distances. The $\mathrm{P}-\mathrm{Hf}-\mathrm{P}$ angles for (1) and (2) are $74 \cdot 80$ (5) and $78.5(2)^{\circ}$, respectively, consistent with the size of the chelate rings.

Introduction. During the course of a synthetic program directed towards systematic investigation of coordination compounds of Group IV metals with halides and phosphines, especially those that contain metal-metal bonds, we have synthesized and structurally characterized two adducts of hafnium tetrachloride with bis(diphenylphosphino)ethane, $\mathrm{HfCl}_{4}(\mathrm{dppe})$.2(toluene), and 1,3-bis(diphenylphosphino) propane, $\mathrm{HfCl}_{4}(\mathrm{dppp})$. Due to the paucity of structural information on complexes of this type we report this work here.

Experimental. Both compounds were synthesized by reacting stoichiometric amounts of hafnium tetrachloride and the appropriate phosphine in toluene at room temperature. The resulting solutions were layered with hexanes and allowed to stand for several days to give colorless X-ray-quality crystals. The crystals were sealed with epoxy cement in glass capillaries. Intensity data for (1) were collected at variable scan speeds ($3-30^{\circ} \mathrm{min}^{-1}$), which depended on a pre-scan count with a skip option, using the moving-crystal/moving-counter technique. Three standard reflections ($\overline{2} 08, \overline{3} \overline{5} \overline{1}$ and $\overline{2} 02$) were measured every 100 reflections and displayed an average decrease of $30 \cdot 3 \%$ during data collection. This decay was corrected for by the use of an isotropic decay correction. Data were corrected for Lorentz and polarization effects, and for absorption effects based on ψ scans using the empirical method of North, Phillips \& Matthews (1968). At the beginning of the data collection for (2) six azimuthal scans were collected and later used to correct for absorption. Intensity data were collected at constant speed of $8^{\circ} \min ^{-1}$ with a variable number of scans (max. $=3$), which was determined on the basis of optimum counting statis-

Table 1. Crystallographic data for (1) and (2)

Systematic absences	$\begin{aligned} & h k l: h+k=2 n+1 \\ & h 0 l: k=2 n+1 \end{aligned}$	$\begin{aligned} & h 01: h+k=2 n+1 \\ & 0 k 0: k=2 n+1 \end{aligned}$
Crystal size, mm	$0.55 \times 0.45 \times 0.45$	$0.35 \times 0.20 \times 0.15$
Data collection instrument	Syntex P3	Rigaku AFC5R
Orientation reflections number and range, ${ }^{\circ}$	$25,20<2 \theta<30$	$25,20<2 \theta<30$
Scan method	$\omega-2 \theta$	$\omega-2 \theta$
Data collection range, ${ }^{\circ}$	$4 \leq 2 \theta \leq 45$	$4 \leq 2 \theta \leq 40$
h, k, l, ranges	$0 \leq h \leq 12$	$0 \leq h \leq 14$
	$\begin{aligned} & 0 \leq k \leq 19 \\ & -20 \leq l \leq 20 \end{aligned}$	$\begin{aligned} & 0 \leq k \leq 15 \\ & -18 \leq l \leq 18 \end{aligned}$
Number of unique data		
(total)	2410	2225
with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$	2079	1509
Number of parameters refined	213	307
Transmission factors		
$T_{\text {max }}, T_{\text {min }}$	0.999, 0.848	$0.999,0.576$
R	0.03531	0.04890
$w R^{*}$	0.04788	0.05658
S	1.030	1.235
Largest shift/e.s.d., final cycle, (Δ / σ)	0.09	0.03
$(\Delta \rho)_{\text {max }},(\Delta \rho)_{\text {min }}, \mathrm{e} \AA^{-3}$	0.54, -0.40	1.38, -0.54
${ }^{*} w=1 / \sigma^{2}\left(F_{o}\right)$.		

tics $[F / \sigma(F)=30]$, using the moving-crystal/movingcounter technique. Three standard reflections ($5 \overline{1} 1$, $46 \overline{6}$ and $\overline{2} \overline{8} 1$), measured every 150 reflections, displayed an average decrease of $64 \cdot 3 \%$ during the data collection. This decay was corrected for by the use of an isotropic decay correction. Data were corrected for Lorentz and polarization effects. All other information relating to data collection and structure refinement of (1) and (2) is summarized in Table 1. In each case the positions of Hf, P and Cl atoms were determined by direct methods (SHELXS86, Sheldrick, 1986) and the remainder of the atoms were located and refined by alternating difference Fourier maps and least-squares cycles employing the Enraf-Nonius (1979) Structure Determination Package (SDP). Atomic scattering factors were those of $S D P$. All atoms were refined anisotropically. H atoms were not included. The final difference Fourier map for (2) showed five peaks near hafnium of height between 1.33 and $0.91 \mathrm{e}^{\AA^{-3}}$. The remaining peaks were randomly located and had heights of $<0.85 \mathrm{e}^{-3} \AA^{-3}$. No disorder or other nonroutine problems arose for either of the compounds.

Discussion. The positional and equivalent isotropic displacement parameters for (1) and (2) are given in Table 2, while Table 3 presents selected interatomic bond distances and angles.* The structures of the hafnium tetrachloride-phosphine adducts are depicted in Figs. 1 and 2 where the atom-numbering

[^1]Table 2. Positional and equivalent isotropic displacement parameters and their estimated standard deviations

$B_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} B_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{\AA^{2}}\right)$
$\mathrm{HfCl}_{4}($ dppe $) .2 \mathrm{C}_{7} \mathrm{H}_{8}$				
Hf	0.000	$0 \cdot 24198$ (2)	0.250	$3 \cdot 226$ (8)
$\mathrm{Cl}(1)$	0.0141 (2)	0.2175 (1)	0.1331 (1)	4.84 (5)
$\mathrm{Cl}(2)$	$0 \cdot 1677$ (2)	0.3229 (1)	$0 \cdot 2762$ (1)	$5 \cdot 87$ (6)
$\mathrm{P}(1)$	-0.1527 (2)	$0 \cdot 1197$ (1)	0.21394 (9)	$3 \cdot 11$ (4)
C(10)	-0.0517 (7)	0.0407 (4)	0.2159 (4)	$3 \cdot 6$ (2)
C(11)	-0.2528 (7)	$0 \cdot 1168$ (4)	$0 \cdot 1258$ (4)	$3 \cdot 6$ (2)
C(12)	-0.2710 (8)	0.0515 (5)	0.0877 (4)	$4 \cdot 6$ (2)
C(13)	-0.3505 (8)	0.0509 (6)	0.0212 (4)	$5 \cdot 6$ (2)
C(14)	-0.4098 (9)	$0 \cdot 1141$ (6)	-0.0078 (5)	5.9 (2)
C(15)	-0.3931 (9)	$0 \cdot 1767$ (6)	0.0309 (5)	$6 \cdot 4$ (3)
C(16)	-0.3147 (9)	$0 \cdot 1796$ (5)	0.0988 (5)	$5 \cdot 4$ (2)
C(21)	-0.2535 (7)	0.0966 (4)	$0 \cdot 2698$ (3)	$3 \cdot 5$ (2)
C(22)	-0.3096 (7)	$0 \cdot 1551$ (5)	$0 \cdot 2959$ (4)	$4 \cdot 6$ (2)
C(23)	-0.3943 (8)	$0 \cdot 1416$ (5)	$0 \cdot 3354$ (4)	$5 \cdot 1$ (2)
C(24)	-0.4223 (8)	0.0708 (6)	$0 \cdot 3505$ (4)	$5 \cdot 3$ (2)
C(25)	-0.3656 (9)	0.0134 (5)	$0 \cdot 3250$ (5)	$6 \cdot 2$ (2)
C(26)	-0.2789 (8)	0.0253 (5)	$0 \cdot 2855$ (5)	$5 \cdot 3$ (2)
C(51)	0.589 (1)	$0 \cdot 4048$ (9)	1.0348 (8)	11.4 (4)
C(52)	0.4791 (9)	0.3816 (6)	1.0593 (6)	$7 \cdot 2$ (3)
C(53)	0.491 (1)	$0 \cdot 3673$ (5)	$1 \cdot 1317$ (5)	$6 \cdot 2$ (2)
C(54)	0.388 (1)	$0 \cdot 3467$ (6)	$1 \cdot 1525$ (6)	$7 \cdot 3$ (3)
C(55)	0.277 (1)	0.3383 (6)	1.1048 (6)	7.4 (3)
C(56)	0.269 (1)	0.3494 (7)	1.0357 (7)	8.0 (3)
C(57)	0.369 (1)	$0 \cdot 3725$ (6)	1.0108 (5)	$7 \cdot 1$ (3)
$\mathrm{HfCl}_{4}(\mathrm{dppp})$				
Hf	0.46628 (8)	$0 \cdot 14695$ (6)	0.13519 (5)	$3 \cdot 80$ (2)
$\mathrm{Cl}(1)$	0.4186 (5)	0.3118 (4)	$0 \cdot 1309$ (3)	$5 \cdot 2$ (2)
$\mathrm{Cl}(2)$	0.4823 (6)	$0 \cdot 1351$ (4)	$0 \cdot 0028$ (3)	$6 \cdot 8$ (2)
$\mathrm{Cl}(3)$	0.5547 (5)	-0.0025 (3)	0.1838 (3)	$5 \cdot 3$ (2)
$\mathrm{Cl}(4)$	0.2776 (5)	$0 \cdot 1039$ (4)	0.1132 (4)	$7 \cdot 7$ (2)
P (1)	0.6816 (5)	0.2324 (4)	0.1881 (3)	$3 \cdot 9$ (1)
$\mathrm{P}(2)$	0.5149 (5)	$0 \cdot 1582$ (4)	0.3096 (3)	$3 \cdot 8$ (1)
C(111)	0.809 (1)	0.166 (1)	$0 \cdot 197$ (1)	$4 \cdot 7$ (5)
C(112)	0.913 (2)	0.210 (2)	$0 \cdot 242$ (1)	8.9 (8)
C(113)	1.012 (2)	0.163 (2)	$0 \cdot 243$ (2)	10 (1)
C(114)	1.007 (2)	0.071 (2)	0.203 (1)	8.4 (8)
C(115)	0.905 (2)	0.032 (1)	0.163 (1)	$7 \cdot 3$ (7)
C(116)	0.798 (2)	0.081 (1)	$0 \cdot 159$ (1)	6.0 (6)
C(121)	0.683 (1)	0.323 (1)	$0 \cdot 110$ (1)	$3 \cdot 6$ (5)
C(122)	0.645 (2)	0.418 (1)	$0 \cdot 120$ (1)	$6 \cdot 2$ (7)
C(123)	0.634 (2)	0.486 (2)	0.052 (1)	$7 \cdot 6$ (8)
C(124)	0.659 (2)	0.457 (2)	-0.015 (2)	8.4 (8)
C(125)	0.702 (2)	0.364 (2)	-0.023 (1)	$8 \cdot 8$ (8)
C(126)	0.711 (2)	0.294 (2)	0.041 (1)	6.9 (6)
C(131)	0.706 (2)	0.303 (1)	0.283 (1)	$4 \cdot 9$ (6)
C(211)	0.461 (2)	0.053 (1)	0.343 (1)	$4 \cdot 3$ (5)
C(212)	0.532 (2)	-0.027 (1)	$0 \cdot 383$ (1)	6.0 (7)
C(213)	0.481 (2)	-0.113 (1)	$0 \cdot 399$ (1)	$6 \cdot 3$ (6)
C(214)	0.368 (2)	-0.114 (1)	$0 \cdot 383$ (1)	$5 \cdot 8$ (6)
C(215)	0.297 (2)	-0.036 (1)	$0 \cdot 346$ (1)	6.0 (7)
C(216)	$0 \cdot 345$ (2)	0.044 (1)	0.327 (1)	$4 \cdot 4$ (6)
C(221)	0.462 (2)	$0 \cdot 251$ (1)	$0 \cdot 358$ (1)	$3 \cdot 7$ (5)
C(222)	0.353 (2)	$0 \cdot 290$ (1)	0.316 (1)	5.4 (6)
C(223)	0.306 (2)	0.358 (1)	0.357 (1)	6.4 (6)
C(224)	0.374 (2)	0.382 (1)	0.441 (1)	$6 \cdot 8$ (6)
C(225)	0.482 (2)	$0 \cdot 342$ (1)	0.481 (1)	$6 \cdot 3$ (7)
C(226)	0.522 (2)	0.278 (1)	0.439 (1)	$5 \cdot 4$ (6)
C(231)	0.669 (2)	$0 \cdot 150$ (1)	0.363 (1)	$4 \cdot 3$ (5)
C(300)	0.738 (2)	0.241 (1)	$0 \cdot 365$ (1)	$4 \cdot 7$ (6)

schemes are also defined. Unit-cell diagrams are shown in Figs. 3 and 4.
Little structural information has been available for simple $M X_{4}$ adducts ($M=\mathrm{Zr}, \mathrm{Hf}$ and $X=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, I) with mono- or bidentate phosphines. Although

Table 3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$; the numbers in parentheses are e.s.d.'s in the least significant digits
HfCl_{4} (dppe). $2 \mathrm{C}_{7} \mathrm{H}_{8}$

Hf	$\mathrm{Cl}(1)$	$2.384(2)$	$\mathrm{P}(1)$	$\mathrm{C}(11)$	$1.828(7)$
Hf	$\mathrm{Cl}(2)$	$2.364(2)$	$\mathrm{P}(1)$	$\mathrm{C}(21)$	$1.815(8)$
Hf	$\mathrm{P}(1)$	$2.808(2)$	$\mathrm{C}(10)$	$\mathrm{C}(10)^{\prime}$	$1.555(9)$
$\mathrm{P}(1)$	$\mathrm{C}(10)$	$1.836(8)$			
HfCl					
Hf	$\mathrm{dppp})$		$\mathrm{Cl}(1)$	$2.398(5)$	
Hf	$\mathrm{Cl}(2)$	$2.336(6)$	$\mathrm{P}(1)$	$\mathrm{C}(121)$	$1.85(2)$
Hf	$\mathrm{Cl}(3)$	$2.398(5)$	$\mathrm{P}(1)$	$\mathrm{C}(131)$	$1.83(2)$
Hf	$\mathrm{Cl}(4)$	$2.357(7)$	$\mathrm{P}(2)$	$\mathrm{C}(211)$	$1.81(2)$
Hf	$\mathrm{P}(1)$	$2.821(6)$	$\mathrm{P}(2)$	$\mathrm{C}(221)$	$1.80(2)$
Hf	$\mathrm{P}(2)$	$2.825(5)$	$\mathrm{P}(2)$	$\mathrm{C}(231)$	$1.85(2)$
$\mathrm{P}(1)$	$\mathrm{C}(111)$	$1.82(2)$	$\mathrm{C}(131)$	$\mathrm{C}(300)$	$1.57(3)$
			$\mathrm{C}(231)$	$\mathrm{C}(300)$	$1.55(3)$

HfCl_{4} (dppe). $2 \mathrm{C}_{7} \mathrm{H}_{8}$

$\mathrm{Cl}(1)$	Hf	$\mathrm{Cl}(1)^{\prime}$	158.44 (8)	P (1)	Hf	$\mathrm{P}(1)^{\prime}$	74.80 (5)
$\mathrm{Cl}(1)$	Hf	$\mathrm{Cl}(2)$	$95 \cdot 11$ (9)	Hf	$\mathrm{P}(1)$	C(10)	$106 \cdot 0$ (2)
$\mathrm{Cl}(1)$	Hf	$\mathrm{Cl}(2)^{\prime}$	98.31 (8)	Hf	$\mathrm{P}(1)$	C(11)	117.8 (3)
$\mathrm{Cl}(1)$	Hf	$\mathrm{P}(1)$	77.81 (7)	Hf	$\mathrm{P}(1)$	C(21)	118.2 (2)
$\mathrm{Cl}(1)$	Hf	$\mathrm{P}(1)^{\prime}$	85.07 (7)	C(10)	$P(1)$	C(11)	103.8 (3)
$\mathrm{Cl}(2)$	Hf	$\mathrm{Cl}(2)^{\prime}$	102.74 (8)	C(10)	$\mathrm{P}(1)$	C(21)	$106 \cdot 6$ (4)
$\mathrm{Cl}(2)$	Hf	$\mathrm{P}(1)^{\prime}$	164.95 (7)	C(11)	$P(1)$	C(21)	$103 \cdot 2$ (3)
$\mathrm{Cl}(2)$	Hf	P(1)	$91 \cdot 50$ (7)	$\mathrm{P}(1)$	C(10)	$\mathrm{C}(10)^{\prime}$	$110 \cdot 8$ (5)

$\mathrm{HfCl}_{4}(\mathrm{dppp})$

$\mathrm{Cl}(1)$	Hf	$\mathrm{Cl}(2)$	$98 \cdot 2(2)$	Hf	$\mathrm{P}(1)$	$\mathrm{C}(111)$	$122 \cdot 0(6)$
$\mathrm{Cl}(1)$	Hf	$\mathrm{Cl}(3)$	$161 \cdot 2(2)$	Hf	$\mathrm{P}(1)$	$\mathrm{C}(121)$	$108 \cdot 1(5)$
$\mathrm{Cl}(1)$	Hf	$\mathrm{Cl}(4)$	$91 \cdot 0(2)$	Hf	$\mathrm{P}(1)$	$\mathrm{C}(131)$	$111 \cdot 7(8)$
$\mathrm{Cl}(1)$	Hf	$\mathrm{P}(1)$	$78 \cdot 4(2)$	$\mathrm{C}(111)$	$\mathrm{P}(1)$	$\mathrm{C}(121)$	$101 \cdot 2(9)$
$\mathrm{Cl}(1)$	Hf	$\mathrm{P}(2)$	$86 \cdot 6(2)$	$\mathrm{C}(111)$	$\mathrm{P}(1)$	$\mathrm{C}(131)$	$109 \cdot 1(9)$
$\mathrm{Cl}(2)$	Hf	$\mathrm{Cl}(3)$	$95 \cdot 0(2)$	$\mathrm{C}(121)$	$\mathrm{P}(1)$	$\mathrm{C}(131)$	$102 \cdot 5(8)$
$\mathrm{Cl}(2)$	Hf	$\mathrm{Cl}(4)$	$104 \cdot 0(2)$	Hf	$\mathrm{P}(2)$	$\mathrm{C}(211)$	$108 \cdot 6(6)$
$\mathrm{Cl}(2)$	Hf	$\mathrm{P}(1)$	$87 \cdot 1(2)$	Hf	$\mathrm{P}(2)$	$\mathrm{C}(221)$	$122 \cdot 9(5)$
$\mathrm{Cl}(2)$	Hf	$\mathrm{P}(2)$	$163 \cdot 6(2)$	Hf	$\mathrm{P}(2)$	$\mathrm{C}(231)$	$109 \cdot 3(7)$
$\mathrm{Cl}(3)$	Hf	$\mathrm{Cl}(4)$	$98 \cdot 8(2)$	$\mathrm{C}(211)$	$\mathrm{P}(2)$	$\mathrm{C}(221)$	$102(1)$
$\mathrm{Cl}(3)$	Hf	$\mathrm{P}(1)$	$89 \cdot 0(2)$	$\mathrm{C}(211)$	$\mathrm{P}(2)$	$\mathrm{C}(231)$	$103 \cdot 8(8)$
$\mathrm{Cl}(3)$	Hf	$\mathrm{P}(2)$	$77 \cdot 2(2)$	$\mathrm{C}(221)$	$\mathrm{P}(2)$	$\mathrm{C}(231)$	$108 \cdot 2(8)$
$\mathrm{Cl}(4)$	Hf	$\mathrm{P}(1)$	$165 \cdot 7(2)$	$\mathrm{P}(1)$	$\mathrm{C}(131)$	$\mathrm{C}(300)$	$113(1)$
$\mathrm{Cl}(4)$	Hf	$\mathrm{P}(2)$	$91 \cdot 6(2)$	$\mathrm{P}(2)$	$\mathrm{C}(231)$	$\mathrm{C}(300)$	$116(1)$
$\mathrm{P}(1)$	Hf	$\mathrm{P}(2)$	$78 \cdot 5(2)$	$\mathrm{C}(131)$	$\mathrm{C}(300)$	$\mathrm{C}(231)$	$118(1)$

several Zr and Hf tetrahalide adducts with such phosphines have been synthesized they have been characterized only by elemental analyses and/or spectroscopic techniques. The earliest report appeared in 1965 and described the synthesis of several compounds of formula $M \mathrm{Cl}_{4}(L L)$, where M $=\mathrm{Zr}, \mathrm{Hf}$, and $L L=$ dppe [1,2-bis(diphenylphosphino)ethane] and dpae [1,2-bis(diphenylarsino)ethane], as well as those of formula $\mathrm{ZrBr}_{4}(L L)$ (Ray \& Westland, 1965). In 1979 the synthesis of $\mathrm{ZrCl}_{4}\left(\right.$ dmpe $_{2} \quad[\mathrm{dmpe}=1,2$-bis(dimethylphosphino)ethane] was reported (Beatty, Datta \& Wreford, 1979), and later the synthesis of the hafnium analog (Fischer \& Wreford, 1980). The last two compounds were used as starting materials for the synthesis of numerous organometallic species of which $\mathrm{ZrMe}_{4}(\mathrm{dmpe})_{2}$ and $\mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}$ (dmpe) were structurally characterized (Girolami, Wilkinson, ThorntonPett \& Hursthouse, 1984). Adducts of formula $\mathrm{ZrCl}_{4} L_{2}\left(L=\mathrm{P} R_{3} ; R=\mathrm{Et}, \mathrm{Pr}\right.$ and n - Bu) (Wengrovius, Schrock \& Day, 1980) have been mentioned but
are not well characterized. Synthesis of $\mathrm{ZrCl}_{4}(\mathrm{dbpe})$ [dbpe $=1,2$-bis(di- n-butylphosphino)ethane] was also reported (Gordon \& Wallbridge, 1986).

The two compounds reported here are the first structurally characterized examples of simple, sixcoordinate Hf tetrahalide adducts with phosphines. The structures of the two compounds are fundamentally similar except for the size of the chelate ring. In (1) the five-membered ring has a twisted envelope conformation while in (2) the six-membered ring exhibits a twisted boat conformation. The $\mathrm{Hf}-\mathrm{Cl}$ distances for the Cl atoms trans to the P atoms are somewhat shorter and have a mean value of 2.364 (2) and $2 \cdot 346$ (10) \AA for (1) and (2), respectively. The values for other $\mathrm{Hf}-\mathrm{Cl}$ distances are 2.384 (4) and $2 \cdot 398$ (5) \AA, respectively for (1) and (2). The mean Hf-P distances are $2 \cdot 808$ (2) and $2 \cdot 823$ (2) \AA for (1)

(b)

Fig. 1. ORTEP (Johnson, 1965) drawing of the HfCl_{4} (dppe) fragment of (a) compound (1) and (b) compound (2). HfCl_{4} (dppe) is located on the twofold symmetry axis. Atoms are represented by displacement ellipsoids at the 50% level. The C atoms are given arbitrary displacement parameters for clarity.

Fig. 2. (a) Unit-cell diagram for (1) and (b) unit-cell diagram for (2). Atoms are represented by displacement ellipsoids at the 20% level. (1) b across, c down, a towards viewer; (2) a across, c down, b towards viewer.
and (2), respectively. The $\mathrm{P}-\mathrm{Hf}-\mathrm{P}$ angle of 78.5° for (2) compared with $74.80(5)^{\circ}$ for (1) is consistent with the larger chelate ring size. The $\mathrm{Hf}-\mathrm{P}$ bond distances for (1) and (2) compare well with those found in $\mathrm{ZrMe}_{4}(\mathrm{dmpe})_{2}$ and $\mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}(\mathrm{dmpe})$ (Girolami, Wilkinson, Thornton-Pett \& Hursthouse, 1984), but the $\mathrm{P}-\mathrm{Hf}-\mathrm{P}$ angle for (1) is about 5° larger.

We thank the National Science Foundation for support.

References

Beatty, R. P., Datta, S. \& Wreford, S. S. (1979). Inorg. Chem. 18, 3139-3145.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Fischer, M. B. \& Wreford, S. S. (1980). J. Organomet. Chem. 188, 353-366.
Girolami, G. S. Wilkinson, G., Thornton-Pett, M. \& Hursthouse, M. B. (1984). J. Chem. Soc. Dalton Trans. pp. 2789-2794.
Gordon, D. \& Wallbridge, M. G. H. (1986). Inorg. Chim. Acta, 111, 77-81.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ray, T. C. \& Westland, A. D. (1965). Inorg. Chem. 4, 15011504.

Sheldrick, G. M. (1986). SHELX86. Program for the solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.
Wengrovius, J. H., Schrock, R. R. \& Day, C. S. (1980). Inorg. Chem. 20, 1844-1849.

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters and complete bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53374 (30 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

